
DOCUMENT RESUME

ED 097 899 IR-001 267

AUTHOR Peelle, Howard A.
TITLE The Computer "Glass Bonn: Teaching With A Programming

Language.
INSTITUTION Massachusetts Univ., Amherst. School of Education.
PUB DATE May 74
NOTE 25p.; Paper presented at the Shared Educational

Computer Systems (SECOS) Conference (New Paltz, New
York, May 1974)

EDRS PRICE MF-$0.75 HC-$1.85 PLUS POSTAGE
DESCRIPTORS Computer Assisted Instruction; *Computer Programs;

*Concept Formation; Learning Processes; Programing
Languages

IDENTIFIERS APL; A Programing Language; Computer Glass Box

ABSTRACT
Using A Programing Language (APL), a "computer glass

-bozo' was designed to stimulate students to think about selected
concepts as well as to elucidate and reveal understanding. This
approach is pedagogically suitable for a wide range of educational
14vels--from elementary school children to university graduate
students. Using APL computer programs, students can proceed to learn
during several complementary activities. Specifically, they can:
examine, analyze, predict, execute, scrutinize, experiment, modify,
generalize, invent, and discuss. The ideal APL is also expository; it
"speaks" to its reader, explicating concepts and procedures in
concrete terms. (11CM)

711

DIC

THE COMPUTER "GLASS BOX ":

TEACHING

WITH

A PROGRAMMING LANGUAGE

By

Howard A. Peelle

University of Massachusrnts

May 1974

US DE0AllerMENT OR MtALTM

satrONAL INSTITUTE OF

.. %* fof f h kf Pk()t', '. .tt #urlest
." , :

.
. 1 .s4

THE COMPUTER "GLASS BOX":

TEACHING

WITH

A PROGRAMMING LANGUAGE

Howard A. Peelle
University of Massachusetts

Introduction

The COMPUTER GLASS BOX is a bold new approach to teaching with

A Programming Language.(In this approach, short and quickly comprehensible

computer programs are given to students for their direct viewing. Each

program embodies a concept, a procedure, or a relationship and is

written as simply and clearly as possible. The inner workings of such

a program are visible and, hence, become the basis for learning.

This approach utilizes a computer program more as a "glass box"

than a black box. The program's formal definition -- expressed in the

explicit terms of a programming language -- serves to elucidate and

reveal understanding. By observing the structure of a program as well

as its behavior, key concepts may become transparent to the student.

1A Programming Language (abbreviated APL) is a new multi-purpose

computer programming language developed by Kenneth Iverson of IBM.

Originally conceived as a unifying mathematical notation, APL has since

been used successfully in fields such as business, scientific research

and education.

2

Related Research

The glass box approach represents a synthesis of ideas put forth

by three other researchers. MIT's Seymour Papert has recommended that

children study procedures actively by using a computer programming

language (called LOGO) as a conceptual framework [1]. Kenneth Iverson

of IBM has persistently stressed simplicity and generality in using

APL to expose fundamentals in a variety of mathematical and scientific

disciplines M. IBM's Paul Berry first advocated open use of APL as

a strategy for teaching in what he called the "functional approach" [3].

Characteristics of the COMPUTER GLASS BOX Approach

In contrast to conventional computer-assisted instruction (CAI),

the glass box approach allows the student significant control over

his own learning processes. This control is achieved through the

activity of programming. Programs can be entered independently by

the student via a computer terminal, and their use requires no other

pre-stored curriculum material--as do most CAI applications. Indeed,

making the full power of the computer accessible to the learner is

180° from the kind of CAI characterized by programmed instruction, tu-

torial, or drill-and-test sequences.

This approach is pedagogically suitable for a wide range of educational

levels--from elementary school fhildren to university graduate students.

Especially for children who have been held powerless in lock-step edu-

cational systems, use of the computer in this way opens up new worlds

of learning--active learning, learning with power.

3

Using glass box computer programs, students can proceed to learn

during several complementary activities. Specifically, they can:

examine the program's definition (intuitively)

analyze the program's definition (logically)

predict the outcomes of the program

execute the program on a computer

scrutinize the program's behavior

experiment with different applications of the progra-

modify or expand the program

generalize the program

invent new or related programs, and

discuss implications w-.1th teachers and peers.

These student-initiated, student-responsible, success-oriented activities

differ dramatically from frantic hand-waving about abstract concepts

often seen in classrooms.

4

The ideal glass box program is also expository--it 'speaks' to its

reader, explicating concepts and procedures in concrete terms. Desirable

characteristics such a program are:

Simplicity

Comprehensibility

Flexibility

Generality

Elegance

Provocative Implications

By "simplicity" I mean that a single idea of modest scope is to be taught

using a brief program (about 10 lines of APL coding, taking less than 5

minutes to type). By "comprehensibility", I mean using clear, readable

commands (usually one per line) with well-chosen mnemonic identifiers.

By "flexibility" I mean a program design which is easily modified and

which can be used with other programs in modular structuring (nested sub-

programs with explicit resultants). By "generality" I mean developing

mathematical models which can extend to a class of cases. By "elegance"

I mean choosing expressions which strike one's aesthetic chords. And,

finally, a glass box program is "provocative" when its implications

suggest interesting follow-up discussions.

To the extent that these characteristics foster insight and learning,

a glass box program is, itself, a pedagogical agent.

3

Examples of Glass Box Programs

To illustrate this approach, some sample glass box AFL programs

are described below, with accompanying suggestions for extending their

use in teaching-learning settings. The sample programs are chosen from

special topics in the following areas:

Computer Assisted Instruction

Psychology

Cybernetics

Computer Art

6

COMPUTER - ASSISTED INSTRUCTION

In order to emphasize the contrast with conventional uses of computers

for teaching, the first glass box program illustrated is from the areaof

computer-assisted instruction. Instead of concealing the CAI program -

usually designed to control the child's behavior -- we show him the

mechanism itself so that he may see how '- works and ultimately control

the computer.

Consider the APL program below which exposes the essence of drill-

and -practice in multiplication skills. In drill-and-practice, typically,

a student is given a series of problems to solve, is asked for his

answers, and the answers are judged for correctness, etc. Indeed, the

computer is an excellent vehicle for administering drill-and-practice,

but a programming language can also describe this process clearly.

V DRILL

[23 NEVPROBLIN:

[2] 'MULTIPLY'

(3) 0FIRST ?20

Cu) [1SECORD4-?20

Cs) ENTAR:ARSIMR4-0

(61 NEWPROBLEM IF ANSFIRR=FIRSTIISSCOND

C 73 ROPE I. TRY AGAIN.'

C 83 -0RNTER

V

The DRILL program begins with a NEWPROBLEM and prints 'MULTIPLY', a
simplified message telling the student what to do with the two numbers
that will follow. The FIRST number is an integer randomly chosen between
1 and 20, and the SECOND number likewise.

The student may ENTER his ANSWER which is then judged for correctness
by the program. IF the ANSWER equals the FIRST number times the
SECOND number, a NEWPROBLEM is given; otherwise (if ANSWER is wrong)
'NOPE. TRY AGAIN.' is printed, and the student may ENTER his answer
again.

6 . 5

NOTE: IF is a sub-program used to facilitate the reading of branching

commands. Its definition is:

V BRANCN4LINN IF CONDITION

[1] BRANCW+CONDITION/LINS

V

Its syntax is 4P(line number) IF (condition)

It means that IF the condition is true (evaluates to 1), the

program branches to the line number (or line label) given; IF

the condition is false (evaluates to 0), the program branches

to the next line.

In order to use the DRILL program, its name is typed. The following

is a sample:
DRILL

MULTIPLY

19

2

ot

38

MULTIPLY

16

18

n:

246

ROPE. TRY AGAIN.

n:

288

MULTIPLY

12

73:

96

MULTIPLY

6

2

12

MULTIPLY

14

18

7

8

Students notice immediately that this program has a flaw. It

does not stop! Scrutinizing the program's definition reveals that after

getting a multiplication problem correct, one always gets a new problem --

ad infinitum. Also, after getting a problem wrong, the student must

answer that same problem again -- another potentially endless loop.

The student's first task, then, might. be to build in en option to stop

the program at will.

DRILL is, of course, only a prototype program. With other modifications

of one's choosing, DRILL may become considerably more sophisticated.

Possible extensions include: (a) displaying pictorial feedback -- like

a "smiley face" for positive reinforcement * o o or a "grouchy

v
\.../

face" * * x instead of 'HOPE. TRY AGAIN.', (b) presenting a pre-

* t *

* 1"*\ ***
specified total number of problems, (c) limiting the number of allowable

mistakes on individual problems (or all problems), (d) generalizing the

multiplicands to create a more flexible range of problems (including

negative numbers, decimals, etc.), (e) gathering performance data, (f)

using performance criteria to make diagnoses, (g) automatically adapting

level of difficulty based on diagnoses, (h) adding personalized instruc-

tions, and (i) building in timing components, jump-ahead options and

hints.

PSYCHOLOGY

With computer programs suitable for viewing, students may learn

some fundamentals of psychology. In studying behavior, for example,

consider the following APL program
1
which models -- albeit crudely --

an emotional reaction.

T TEMPER

El) smorromq-o

(23 NEW:EMOTZ010-0+EMOTION#2

(3) *MAD IF R14021'01010

00 *RAW

(53 MADO*10,?:**?1,2'

V

9

TEMPER is a program which will,

under certain conditions,

'get mad at you'.

The program begins with zero EMOTION and then encounters a series
of numbers, representing 'events' in the life of the program. A low
number is low in emotional significance; whereas high numbers are highly
emotion-producing.

Each time a number is entered, the program generates a NEW EMOTION
based on a simple mathematical model: EMOTION becomes the number just

entered plus one half of the previous EMOTION. (In the course of human

events, this might be akin to the ameliorating effect of time on emotional

burdens, i.e. 'sleeping cn your troubles'.)

This process continues until a test conditionthe "threshold" for

mad behavior--is exceeded. The program goes MAD if EMOTION ever becomes

greater than 10. (**!?!**?!! is the computer's programmed vernacular.)

This program is similar to one written in a simplified FORTRAN

by John Loehlin in Computer Models of Personality, Random House, NY, 1968.

10

To use the program, the child types its name (TEMPER) and then

enters a sequence of numbers. For example: TSNPtR

Where a 4 is like "stubbing
your toe",

6 is like "losing your
wallet," and

8 is like "missing the
last bus."

0:

0:

Os

8

This sequence produced MAD behavior. **!?!**7::

But, suppose one tries entering the same numbers in a different order:

713Mtit

0:

0:

8

6

Here, the program does not display MAD: 1**!?!**?!!'. Apparently, (for

this model) the sequence 8 6 4 is "tolerable," whereas the previous

sequence 4 6 8 clearly was not tolerable!

Again, this suggests an analogy with human behavior: experiencing

tho most emotion-packed ovents first and then tapering off may be more

tolerable than the reverse.

Other variations of input also suggest interpretation in terms of

human psychology. Sandwiching a low-emotion event between two high-

emotion events, say 7 2 7, can make the total sequence tolerable; by

contrast, the events 7 7 2 and 2 7 7 produce mad behavior.

11

The mathematics underlying this TEMPER model can be exposed quickly

and naturally. For example, after some experimentation with the program,

one might wonder: How many 5s can the program take before it 'blows

its top?'

TEMPER

0

5

0:

5

:

0:

5

:

5

0:

A sequence of 5s builds up EMOTION to higher and higher values, but never

reaches 10. This process parallels the well-known geometric series

_L.
2 4 8

J.
14 32

the sum of which converges to 2.

Exploring in this way, a child may gain some insight into the nature

of infinite series in an active and interesting (at least less abstract)

setting.

12

Some simple modifications of the TEMPER program students might make

are to: (a) change the threshold, e.g. from 10 to 25 for higher tolerance,

or to ?25 (a random number) for unpredictable behavior; (b) modify the

model, e.g. from EMOTION 4 2 to EMOTION 4. 3 to express stronger 'for-

getting'; (c) adapt the program for use by others, e.g. inserting

conversational statements such as 'ENTER NUMBERS FROM 1 TO 9' or even

'CAUTION! THIS PROGRAM MAY BECOME EMOTIONAL...', and (d) mike the

program dynamic, e.g. automatically resetting EMOTION to 0 after an

emotional catharthis.

Possible extensions of TEMPER include: (a) writing related programs,

such as a version with multiple emotional dimensions like ANGER, FEAR,

and LOVE, and (b' writing companion programs, such as two TEMPER-like

programs which interact with each other so that one's outrdt is the

other's input.

4

CYBERNETICS

In the area of cybernetics, students can be introduced to some

sophisticated ideas by using simple computer programs. Scene analysis,

for example, is an important part of robotics research. In designing

vision machines, it is important to know what types of scenes can be

computationally distinguished. Consider the two scenes below:

SCSI RS

* * * * * * *

One scene is "connected"; the other is not connected. Note that the

same line segments comprise the two scenes, but that they are in different

positions.

Suppose one of these two SCENES is PICKed at random. Call it

MYSTERY.
MYSTERY PICK SCENES

Further suppose that you are permitted to PEEK at small portions of the

MYSTERY scene -- called "microscenes" -- but you are not told where the

microscenes came from. For example,

PEEK MYSTERY

PEEK MYSTERY

PEEK MYSTERY

14

PEEKing at MYSTERY is like

using a flashlight to illum-

inate small unidentifiable

places on a much larger un-

known scene.

After a period of probing, the question arises: last. you determine

which scene it is that you are looking at?
1 (The answer is postponed so

that the reader may ponder this question.)

'This question is treated as a theorem by Minsky and Papert in

their book Perc,ptrons, MIT Press, 1970.

The APL programs which facilitate exploration of this question in

scene analysis are simple indeed:

v MYSTERYPICE SCENES

Ci] MYSTERYP.SCENES(11;s3

v MICROSCENETEEK SCENE

til NiCROScENg*SCETEC(004.0110);(14).t?i0)1
a random 4 by 4 portion for the

V result called MICROSCENE.

15

This program will PICK one of 2
SCENES at random for the result
called MYSTERY.

This program will PEEK at some
two - dimensional SCENE and produce

The enterprising student might elect to automate the production of

MICROSCENEs.

AUTOPEEN AUTOPEEK

[1] It

[2] PREY MYSTERY

(31 If

[4] "01

000
000
000

11111PIMINIM

16

Soon it should become clear that these two SCENES cannot be distinguished

on the basis of random microscenes alone. (Of course, if one could trace

sequentially through a scene, its "connectedness" or "non-connectedness"

could be determined easily.)

Possible extensions of this excursion into scene analysis include

studying perceptrons
1
and related questions about "spatially local

evidence." For example, if all the possible microscenes look like these:

0000
0000
moo
anon]:10

000
000

000
000
000

(plus geometric translations of these)

000
000
000

Can you determine the type of scene from which they were drawn?

(This one is left for the reader.)

1Perceptrons are theoretical machines which can be trained to detect
features of a scene by computations in a layered network of logical elements.

COMPUTER ART

The world of computer art can be opened to students through a few

dimple APL programs. Beginning with a foray into automated design,

they can proceed to engage matters of aesthetic judgement and artistic

technique.

For example, consider the following DESIGN program.

9 PICTURESIZE DESIGN COLORS

[1] ROWMANY+0 COLORS

[2] PICTURE*.COLORS(?SIZEpROWNANI3

V

DESIGN uses same COLORS (symbols on the keyboard) and some SIZE (two

dimensions of a matrix) to produce a PICTURE.

A simple program like DESIGN goes a long way with children. They

seem never to tire of it, for it can produce quite a variety of designs:

10 20 DESIGN I - _ V

17

10 20 DESIGN '//44,7\\'

41/417//AV\0 \9 \9\\./\\

ViVVAV/V WA\ f/i4Mv
\VV/i/Voi\e\\AVAV\
V/V /W/VW\i/VAVV
AV\\oVA\VV/V/AVAM
/4110//iitto/milmoivAeo
//4\9AV/V\Ael4 aV\\
VVV*/AAVAAAA4/
WeAVVVA\417\//\o\VA\
cotimV9vifilV\AMA\iti

00
0 0
0

00

.00

. o

. 0 . 0.

10 20 ass: Gs

4 4
4 444

44 AAnDerip 4

4 4
4

4 4
4 004 Poo 4

4 4
4 444 444 44

4 44 4 . 4 44
4 4 4

44 444

10 20

00
0 00.0

DESIGN ' 0 0 0

o oo
0 0 008 00 .

()coo() 0 oo0o
0000 0 00

. 000
0 0 00 .0 0

000 0 10 20 DESIGN
00. 0 0

* *UU *U0UUu*UUU**,.;
U UUUU* **M.

*UUUUU *UUU*U* 0U*OU
*0 UUUUU*0 U01.1*UU
UU***000**UU 0U*UUUU
***0**UU**UU* 00.000
* *****ou* **outiou*u
*U*OU*OU* *0*0 U*U*
*U *UU0* UU*0 *0000

UUUOUOUUU*0* OU*0000

18

19

While these "computer hieroglyphics" may have dubious aesthetic

appeal, one can imagine -- instead of these typed symbols -- randomly

generated swatches of color, perhaps displayed on a television-like screen.

Extensions of this approach to computer art include: (a) automating

DESIGN, (b) weighting the selection of COLORS, (c) asking for human

judgement (Do you like it or not?) in order to adjust weights on COLORS

or other aesthetic factors, and (c) piecing together several computer-

generated PICTURES into a montage.

20

Another approach to computer art involves viewing programs which

simulate artistic technique. For example, consider the program MONDRIAN

below (named after the Dutch abstract painter).

V MONDRIAN

[1] CANVAS'-30 500'

1.21 DAB:coLopfor1 lo[?3]

r31 SIZE" -3 sr ?6 10

(4] PICK:PLACE0.?30 50-SIZE

[s] OVERLAIN-4.14.1CANVAS[PLACE[1]+tSIZE[1];PLACE[2]stSIZE[2110.

[61 PICK IF OVERLAP)?

[7] CANVASfPLACE[114.x6IZE[1];PLACE[2]+iSIZF[211,-COLOR

[8] 4.DAS IT(PERCENT"ON CANVAS))67

rco CANVAS

V

MONDRIAN begins with a blank canvas (arbitrarily set at 30 by 50). Then

the program chooses a random COLOR, SIZE and PLACE to DAB.

OVERLAP measures the extent of overlap with DABs already on the CANVAS.

IF OVERLAP is greater than 2, then it will PICK another PLACE. (This

is tantamount to finding relatively open space on the CANVAS).

IF, however, OVERLAP is not too large, the COLOR is put on the CANVAS

at the PLACE and in the SIZE selected.

The program continues to DAB IF the PERCENT of blank spaces ON the CANVAS

is greater than 67. In other words, as soon as it is 1/3 filled up,

CANVAS is displayed.

Note: MONDRIAN uses two simple sub-programs (mostly for readability).

They are PERCENT and ON:

V DENSITY'-SYMBOL ON PICTURE

V NUNPFEDTRS+PENCENT N

[1] NUNDREPTNS*10.54.100wN

V

(11 DENSITY.,-(414./SYMBOL:PICTURE) #(IL/0PICTURF)

V

Now, MONDRIAN at work:

MONDRIAN

0000000000
0000000000
0000000000

MOW°
000000
000000

0000000
0000000
0000000

0000000130
000E100000
001.100001IJ

0000000000
0000000000
0000000000

********00000

00000
00000

1300000E1
00130011
00001100
0000000

00000 0000000
MOM 0000000
1.101.100

110000
00000
00000

00000000
00000000
0000E1000OM=
UU0000133
0013012100

21

Possible extensions of this kind of program include: (a) simulating

and combining additional artistic techniques (those that can be operational -

ized), (b) computing abstract measures of difference between random "paintings"

produced by the computer, (c) converging to minimal differences from a pre-

viously specified "ideal" painting, and (d) developing a model for aesthetic

judgment -- perhaps one which "evolves."

22

Conclusion

These are but a few APL "glass box" programs designed to stimulate

students to think about selected concepts. Each of the sample programs

shown here can be used as is and, of course, can be extended in a myriad

of directions. Other topics well-suited for this pedagogical approach

include some drawn from linguistics, statistics, mathematics, engineering,

ecology, and physical sciences.

The challenge to educators, then, is to identify such topics suitable

for embodiment as glass box programs, to search out the kernel concepts

to be taught, and to lead students to better understandings of those

concepts using a programming language.

23

References

[1] Papert, S. "Teaching Children Thinking", M.I.T. LOGO Memo #2, Oct. 1971.

[2] Iverson, R.E. "APL in Exposition", IBM Tech. Report #320 -3010, Jan. 1972.

[3] Berry, P. et.al. "APL and Insight: The Use of Programs to Represent
Concepts in Teaching", IBM Tech. Report #320-3020, March 1973.

